TABLE I-continued

AGAROSE* DERIVATIVES FOR GEL SIEVING PROPERTIES AGAROSE: DERIVATIVE DESIRABLE R = AGAROSE**PROPERTIES** Sieving plus special bio-NH-(CH₂)_n-NH-GLU-P logical affinity or GLU, P, E, L = as above sugar moiety selectivity and/ or substrate NH-(CH₂)_n-NH GLU-E specificity or $-NH-(CH_2)_n-NH-GLU-L$ (27) $R - NH(CH_2)_n - NH$ Sieving and special biologn = 2-6E or L can substitute for P ical affinity, sugar moiety selectivity and/ or substrate specificity Sieving and special etc. (28) R-O-CH₂ C -NH-P as above E or L can substitute for P (29) R-O-CH-CONH2 Sieving $[\dot{C}H-CONH_2]_n$

TABLE II									
		ive Resolv trophoretic							
		Resolution (No.# of Protein Bands)							
Gel		Conc.	Protein	Protein	Protein	Protein			
Composition		(%)	A	В	C	D			
Gelidium-derived Agarose		4.0	2	1	4	2			
Gelidium-derived Agarose containing 9.0% hydroxy- ethylation		4.0	4	3	5	4			
Polyacrylamide		5.0	2	1	3	1			
Polyacrylamide		7.5	5	5	2	4			
Prote	in								
Code	Identification								
A B C D	Ovalbumin (MW = 43,000; pI = 4.7) Bovine serum albumin (MW = 67,000; pI = 4.7) Ferritin (MW = 440,000; pI = 4.5) Thyroglobulin (MW = 669,000; pI = 4.5)								

n = 1-2000

Many of the above proteins contain subunits or otherwise display microhetero

TABLE III

Genus from which the agarose was derived	Agarose Ge Reduction by 3 Wt. % of Derivative			
(1) Gelidium	0	4%	106 ± 52	-
(2) Gelidium	4	4%	69 ± 52	
(3) Gelidium	9	4%	42 ± 18	

What is claimed is:

1. A method of separating biological mixtures by subjecting them to gel electrophoresis using as the gel

- 35 matrix a derivatized agarose containing at least one substituent having a preselected conformational shape such that the pore diameter of the derivatized agarose is not reduced below about 10° A units, the D.S. being from about 0.001 to about 2.0, whereby the components 40 in said mixture are separated as a function of their molecular size.
 - 2. The method according to claim 1 wherein the substituent is 2-hydroxyethyl.
- 3. The method according to claim 1 wherein the 45 biological mixtures are DNA fragments.
 - 4. The method according to claim 1 wherein the biological mixtures are proteins.
- 5. A derivatized agarose, useful as an electrophoretic sieving gel, containing at least one substituent having a 50 molecular weight range greater than 100 to about 1,000,000 and a preselected conformational shape such that the average pore diameter of the derivatized agarose is not reduced below about 10° A units, the D.S. being from about 0.001 to about 2.0.
- 55 6. The derivatized agarose according to claim 5 wherein the substituent is attached to the agarose molecule via a linkage selected from the class consisting of ether, ester, amide, amine, isourea, and carbamate linkages.
 - 7. The derivatized agarose according to claim 6 wherein the substituent is attached to the agarose molecule via an ether linkage.
- 8. The derivatized agarose according to claim 6 wherein the substituent is attached to the agarose mole-65 cule via an ester linkage.
 - 9. The derivatized agarose according to claim 6 wherein the substituent is attached to the agarose molecule via an amide linkage.